Isolation and Genomic Characterization of Mycobacteriophage sp. Hope

Marie Anderson[†], Tara Avery[†], Tiffany Bryan [†], Ashiya Buckels[†], Keithara Davis[†], Breyon Dixon[†], Arianna Forbes[†], Zindzi George[†], Audrianna Gordon[†], Shalaina Griffin[†], Tiffany Grigley[€], Raven Hardy[†], Lateria Haynes[†], KaTerri Kelly[†], Kinnari Matheson [†], Jazmyn McCloud[†], Morgan McKenzie[†], Sterling Mitchell[†], Orianne Morrison[†], Lindsay Parnell[†], Brianna Peppers[†], Christina Roberts[†], Yetta Robinson[†], Kerona Sharpe[†], Blaire Spaulding[†], Starrissa Winters[†], Melina Zuniga[†], Charles Hardnett[‡], and Cynthia Bauerle[†]

Departments of Biology[†], Economics[€], and Computer Science[‡], Spelman College, Atlanta, GA 30314

Project Participants

Bio 491 Students Spring 2009

Project Background

Why Bacteriophages?

- Bacteriophages are among the most abundant life forms in the biosphere (10³¹!!)
- Bacteriophages display significant genetic diversity
- Phage genomes are highly mosaic and contain many novel sequences
- Small genomes are amenable to comparative genomic analysis

Mycobacteriophages

- Viruses that infect mycobacterial hosts (e.g. M. smegmatis, M. tuberculosis, M. leprosae)
- These efforts lend themselves to possible viral therapy treatments.
- 75+ mycophage isolates classified into 9+ clusters

Suttle, C (2005) Nature, 437:3456-361

Hatfull et al, 2006, PLoS Genet 2(6): e92

Project Objective

The objective of this study is to isolate and characterize a novel mycophage in order to contribute to a growing phylogeny of diverse bacteriophage isolates from soil

Strategy

Semester: 1

Semester: 2

Information Analysis:

•Receive sequenced DNA from sequencing

center

•Evaluated Genomic Quality using Sequencher

Capture: Bacteriophage were obtained from soil collected at Arabia Mountain

Tame: Bacteriophage Hope was isolated by enrichment and purified by multiple passages on bacterial lawns

Dissect: •Phage morphology was analyzed using electron microscopy •Genomic DNA isolated and analyzed by restriction digestion •Genomic DNA submitted to JGI for sequencing

Genomic Analysis: •Analyzed DNA information using computer programs such as Glimmer and GeneMark •Identify genes and define genomes

Share: •Upload genome to the SEA research archive •Submit information to GenBank

Capture

Tame

Tame: Bacteriophage Hope was isolated by enrichment and purified by multiple passages on bacterial lawns

Plaque formation on *Smegmatis* lawns

Dissect

Tail 220 nm
Capsid 60 nm in diameter

Dissect: •Phage morphology was analyzed using electron microscopy

Negative staining with PTA. 60,000x magnification

Dissect

Figure 2. Molecular analysis of Hope genomic DNA. *Panel A*, restriction analysis of Hope gDNA: Lane 1, Lambda HIII markers; Lane 2, 1 kB ladder; Lane 3, HIII digest of Hope gDNA; Lane 4, HaeIII digest; Lane 5, EcoRI digest; Lane 6, Clal digest; Lane 7, BamHI digest; Lane 8, undigested gDNA. *Panel B*, Quality Control gel of genomic DNA, Hope sample indicated on the figure by an asterisk.

Dissect:

•Genomic DNA isolated and analyzed by restriction digestion •Genomic DNA submitted to JGI for sequencing

Analyze

- Initial DNA sequence compiled as single contig
- Finished linear sequence 41,901 nucleotides
- Restriction site analysis corresponds with restriction analysis of isolated gDNA
- 58-59 Open Reading Frames identified by Glimmer and GeneMark

Putative TMP orf corresponds to phage tail length

Information Analysis: •Receive sequenced DNA from sequencing center •Evaluate Genomic Quality using Sequencher

Analyze predicted ORFs (start codon, overlapping ORFs)
Identify Shine-Delgarno sequences

Showing 41.9 kbp from Hope, positions 1 to 41,901

Gene Analysis: •Analyzed DNA information using computer programs such as Glimmer and GeneMark

Discover

Hope (Sept 2009,GA) displays 100% nucleotide sequence identity with BPs (Mar 2008, PA):

Repositioning of a 440 nucleotide module (gp 55)

BLAST of full length Hope genome:

3' end of Hope genome:

Discover

Gp55 is highly conserved among 12 mycophage including representatives from clusters G, F and I

Homologous Recombination ?

Recombination intermediate

Evidence for Homologous Recombination?

•Conserved inverted repeats

Hope_p42 corresponds to RecE homologs found in only 3 other isolates Hope_p49 corresponds to RuvC homologs found in many other isolates

Conclusions/Discussion

•Hope is a member of the Siphoviridae family of mycobacteriophages, and displays significant nucleotide sequence identity with G cluster mycophages

•Hope displays a novel genomic arrangement at the 3' end compared to BPs, Halo, and Angel

•Hope genome contains a highly conserved 440 bp module that bears a putative gene coding sequence (gp57) and is observed in diverse mycophage genomes

•Mycophage Hope genome contains genetic elements consistent with the presence of a RecE homologous recombination mechanism

Acknowledgements

Spelman College: Chringma Sherpa, Biology Charles Hardnett, Computer Science Barbara Bell, Health Careers Program Ms. Nina Walker, OSETC Office Dwayne Williams, MIT Johnnella Butler, Provost

Scientific Advisors: Graham Hatfull, Lead Scientist Deborah Jacobs-Sera, UPitt Steve Cresawn, JMU Lawrence Brako, MSM EM Core facility

SEA:

Tuajuanda Jordan, Director Lucia Barker Kevin Bradley Matthew Conte Melvina Lewis

HHMI: Peter Bruns