
Dissecting the Tools of Bioinformatics: Building SpelFinder, a primer identification tool in Python
Charles Hardnett and Cynthia Bauerle

Departments of Computer Science and Biology, Spelman College, Atlanta, GA 30314

CONTEXT

Finishing the Genome: Students used Sequencher to identify low

confidence/low coverage regions within the returned genomic

sequence. They used Primer3 to select sites for the design of

oligonucleotide primers to direct DNA sequencing across targeted

regions.

Primer3: This tool contains a primer identification program readily

available over the Internet, that identifies suitable primers. Users

input a source sequence, set search parameters, and obtain a list

of potential primers as output. Primer3 parameter variables

include:

•Sequence length

•Melting T(Tm)

•3’ stability

•GC%

•Poly-X runs

•self-

complementarity

•Excludable regions

Understanding Primer3: To better understand how Primer3

operates to identify acceptable primer sequences, students built a

simple sequence identification program in Python. Spelfinder

searches a source sequence and identifies primers based on a

simplified set of parameters:

•Sequence length: 18 ≥ 30 nucleotides

•GC%: 40 ≥ 60

•Poly-X ≤ 3 (where X = A, T, G, or C)

•Tm: 55°C ≤ Tm ≤ 75°C

where Tm = [(G+C)primer x 4°C] + [(A+T)primer x 2°C]

ABSTRACT

As participant in the National Genomics Research Initiative supported by HHMI,

the Biology department at Spelman College offered a course-based research

opportunity for first year science students to isolate and characterize novel

mycobacteriophages. In fall 2008, twenty first year students isolated novel

mycophages and conducted standard microscopic and molecular characterization.

In spring 2009, fourteen of these students, joined by six advanced biology majors,

conducted genomic annotation of one phage isolate using standard sequence

analysis approaches and bioinformatic tools available via the Internet. While prior

experience applying bioinformatics tools varied among the cohort, no students

described any prior experience in computer programming. To help students better

understand the construction and utility of standard molecular analysis tools, we

developed a course activity in which students used the Python programming

language to build a primer identification tool that they named SpelFinder.

Students were introduced to basic elements of the Python language in a hands-on

group exercise, and then used these elements to build simple algorithms.

Ultimately, students assembled algorithms into a script that analyzes an input

nucleotide sequence and reports potential primer target sites as output. The

program was based on an algorithm that reflected four relevant biological

criteria. Writing the program de novo in Python introduced students to basic

programming strategies for developing functional algorithms useful in standard

bioinformatics tools. Specifically, students were challenged to understand how

biological criteria may be translated into a set of rules that drives the algorithm of a

sequence analysis software program.

PYTHON BASICS
Python is a general purpose, highly readable, high level computer programming

language.

Python program may be created in a standard text editor such as Notepad or

TextEdit. Once saved, the program may be run by using the python command to

execute the program. The output will appear on the next line:

Python performs calculations using common arithmetic symbols:

Addition: +

Subtraction: -

Multiplication: *

Division: / and / /

Equal: =

Exponentiation: * *

Modulus: % (finds remainder, e.g. 10 % 3 = 1)

TASK 1: Compute all subsequences of lengths 18 ≥ 30 from

the source sequence string

Pseudocode: Start = 1
While (Start < length of DNA Sequence)

For each extracted subsequence starting at Start with length
18, 19, 20, 21,...30
Analyze the subsequence using criteria

1. Disallowed consecutive nucleotides
2. GC Content range
3. Melting Temperature Range

End For
increment Start (create next start position)

End While

Python: for size in range(18,30,1):
for start in range(0,len(dna)-size,1):

subsequence = dna[start : start+size]

Output:

• The first statement assigns values 18, 19, 20, ... 30 to size on at a time

• The second statement assigns starting positions 0, 1, 2, 3, ..., end
o Python strings start at position 0 and not 1!

• The third extracts the subsequence from the start to its position at a length of size
(start+size is the end position for the subsequence)

TASK 2: Skipping subsequences containing poly-Xn where

X is A, T, G, or C, and n ≥ 4

Pseudocode: if (subsequence contains "TTTT") or

(subsequence contains "AAAA") or

(subsequence contains "CCCC") or

(subsequence contains "GGGG") then

skip this subsequence

Python: if "TTTT" in subsequence:
continue

if "GGGG" in subsequence:
continue

if "AAAA" in subsequence:
continue

if "CCCC" in subsequence:
continue

Output:
• The continue means to skip the other criteria in the loop and go to the next loop

iteration i.e. next subsequence

• The in operator is a Python string operator for determining the existence of a
substring within a string

SPELFINDER: What the program looks like

GENERAL PROGRAMMING STRATEGY

Creating a program is an iterative process:

1. Define a search criterion

2. Design the algorithm using pseudocode
3. Implement the algorithm as a computer program

4. Test the computer program

5. Fix errors by repeating steps 1-3 until all tests pass

Program elements:

String: Nucleotide source sequence is stored as a collection of

characters called a string
Algorithm: Each search parameter is represented by a

computational procedure called an algorithm that sets criteria for

the search

Program: All algorithms defining search parameters are

assembled into a script that directs the function of the program

OBJECTIVE

To help students better understand the construction

and utility of standard sequence analysis tools

SPELFINDER: What the output looks like:

