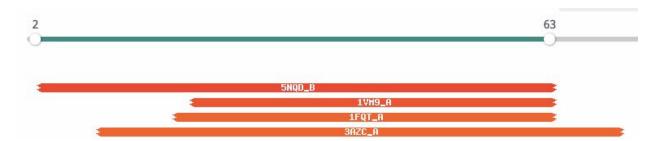
Phage	Secretariat · Cluster DJ · 57731 bp
Gene	Secretariat_Draft_79
Pham (click for Pham view →)	22354
Starterator	Pham 22354 report
Genome Position	51192 to 51419 (Forward)
Length	228 base pairs 75 amino acids
Amino Acid Sequence	Click to View
Notes	

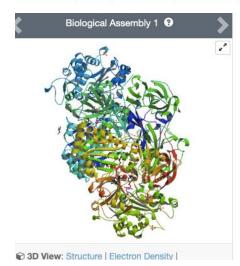

Secretariat_Draft_79

DNA PROTEIN DOMAINS CLUSTERS FUNCTION

Secretariat_Draft gene 79 (51192 - 51419) | pham 7579

Schwartz33_Draft_83

>Secretariat_Draft gp79



 ${\tt MNHTYVIDPENDIFDVVVRLSVRTGDGQFTDVTHRCGNAKVRPAMVINKETVDCLTCGSQFDLYPEGENLEQQAS}$

Hit :	Name	\$ Probability :	E-value ‡	SS ‡	Cols ‡	Length
5NQD_B	Arsenite oxidase large subunit AioA; Arsenite oxidase, DMSOR family, Rieske; HET: GOL, MGD, EDO, PGE, P33, F3S, FES, SO4; 2.2A {Rhizobium sp. NT-26}; Related PDB entries: 5NQD_H 5NQD_F 5NQD_D	93.43	0.15	4.7	62	132
1VM9_A	protein; STRUCTURAL GENOMICS, CESG, PROTEIN STRUCTURE; HET: EDO; 1.48A {Pseudomonas mendocina} SCOP: b.33.1.1; Related PDB entries: 1SJG_A 4P1C_I 4P1C_H 2Q3W_A 4P1B_I 4P1B_H	92.62	0.15	3.4	44	111

5NQD_B Arsenite oxidase large subunit AioA; Arsenite oxidase, DMSOR family, Rieske; HET: GOL, MGD, EDO, PGE, P33, F3S, FES, SO4; 2.2A {Rhizobium sp. NT-26}; Related PDB entries: 5NQD_H 5NQD_F 5NQD_D

Probability: 93.43%, E-value: 0.15, Score: 29.92, Aligned cols: 62, Identities: 16%, Similarity: 0.147,

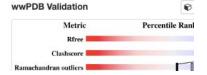
5NQD

Arsenite oxidase AioAB from Rhizobium sp. str. NT-26 mutant AioBF108A

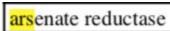
DOI: 10.2210/pdb5NQD/pdb

Classification: OXIDOREDUCTASE Organism(s): Rhizobium sp. NT-26 Expression System: Escherichia coli

Deposited: 2017-04-20 Released: 2018-05-30


Deposition Author(s): Santos-Silva, T., Romao, M., Vieira, M., Marques, A.T.

Funding Organization(s): FCT; PT2020


Experimental Data Snapshot

Method: X-RAY DIFFRACTION
Resolution: 2.2 Å

R-Value Free: 0.217 R-Value Work: 0.172

Display Files -

Chemosphere. 2016 Nov;163:400-412. doi: 10.1016/j.chemosphere.2016.08.044. Epub 2016 Aug 24.

Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review.

Kumari N1, Jagadevan S2.

Author information

Abstract

Arsenic (As) contamination in water is a cause of major concern to human population worldwide, especially in Bangladesh and West Bengal, India. Arsenite (As(III)) and arsenate (As(V)) are the two common forms in which arsenic exists in soil and groundwater, the former being more mobile and toxic. A large number of arsenic metabolising microorganisms play a crucial role in microbial transformation of arsenic between its different states, thus playing a key role in remediation of arsenic contaminated water. This review focuses on advances in biochemical, molecular and genomic developments in the field of arsenic metabolising bacteria - covering recent developments in the understanding of structure of arsenate reductase and arsenite oxidase enzymes, their gene and operon structures and their mechanism of action. The genetic and molecular studies of these microbes and their proteins may lead to evolution of successful strategies for effective implementation of bioremediation programs.

Copyright © 2016 Elsevier Ltd. All rights reserved.

KEYWORDS: Arsenate reductase; Arsenic; Arsenite oxidase; Bioremediation; Genes; Operon

PMID: 27565307 DOI: 10.1016/j.chemosphere.2016.08.044 [Indexed for MEDLINE]

GO - Molecular function i

- 2 iron, 2 sulfur cluster binding
 Source: InterPro
- arsenate reductase (azurin) activity
 Source: UniProtKB-EC
- oxidoreductase activity, acting on diphenols and related substances as donors
 Source: InterPro

Molecular function Names & Taxonomy¹ Protein names¹ Gene names¹ Oxidoreductase ♥ Imported ▼ Imported ▼ Imported ▼ Imported ▼ Imported ▼ Imported ▼ ORF Names:GCWB2_15850 ♥ Imported ▼ Organism¹ Taxonomic identifier¹ Taxonomic identifier¹ Taxonomic lineage¹ Proteomes¹ Proteomes¹ Proteomes¹ UP000264305 Component¹: Chromosome

Subcellular locationⁱ

opology								
Transmembrane i	56 - 76	Helical	🖮 Add 🔧 BLAST		21			
Transmembrane i	96 - 117	Helical	₩ Add % BLAST		22			
Transmembrane i	163 - 187	Helical	🖮 Add 🔧 BLAST		25			