London gp47 – Hypothetical protein or thiamine-binding protein?

Found in 8 cluster AZ phages, just upstream of integrase on reverse strand. Pham 7014

Summary:

Good alignment with thiamine-binding proteins. However,

- These are usually part of a multi-gene system. What is the function of this gene by itself?
- What is its function in phage multiplication?
- This domain is in the ACT domain family, which is found in many different proteins with various functions and ligands.

Recommendation: Keep as hypothetical protein for now.

Gene	Phage	Accession	Notes	Cluster	Length
Asa16_47	Asa16	MZ681506	putative thiamine-binding protein	AZ	321 bp
Ascela_Draft_52	Ascela			AZ	321 bp
Elezi_47	Elezi	MT639653	putative thiamine-binding protein	AZ	321 bp
Eraser_47	Eraser	MZ747516		AZ	321 bp
Iter_50	Iter	ON208833		AZ	321 bp
London_47	London	MT889366		AZ	321 bp
Niobe_47	Niobe	MZ820087	putative thiamine-binding protein	AZ	321 bp
Nitro_Draft_51	Nitro			AZ	321 bp

HHPred results

https://toolkit.tuebingen.mpg.de/jobs/5897366_54

Hits to several hypothetical proteins and Bacillus YkoF thiamine-binding protein

	1LXJ_A	HYPOTHETICAL 11.5KDA PROTEIN IN HTB2-NTH2 INTERGENIC REGION; Hypothetical protein, HTB2- NTH2 intergenic region, Structur	99.92	1.4e-23	138.29	14.1	98	104
2	1YQH_B	IG hypothetical 16092; Bacillus cereus, structural genomics, PSI, Protein Structure Initiative, Midwest Center for Struc	99.92	2.2e-23	138.07	14.4	98	109
3	1LXN_D	HYPOTHETICAL PROTEIN MTH1187; HYPOTHETICAL STRUCTURE, STRUCTURAL GENOMICS, PSI, Protein Structure Initiative, Northeast	99.91	6.7e-23	133.11	13.5	96	99
4	2EPI_A	UPF0045 protein MJ1052; NPPSFA, National Project on Protein Structural and Functional Analyses, RIKEN Structural Genomic	99.89	1e-21	128.08	13	93	100
5	2IBO_C	Hypothetical protein SP2199; alpha-beta protein, Structural Genomics, PSI-2, Protein Structure Initiative, Northeast Str	99.89	1.7e-21	128.43	14	95	104
6	PF01910.20	; Thiamine_BP ; Thiamine- binding protein	99.89	1.4e-21	125.81	12.6	91	92
7	1VK8_A	hypothetical protein TM0486; PROTEIN WITH POSSIBLE ROLE IN CELL WALL BIOGENESIS, STRUCTURAL GENOMICS, JOINT CENTER FOR S	99.87	1.2e-20	125.19	12.7	89	106
8	PF07615.14	; Ykof ; YKOF-related Family	99.83	3.4e-19	112.29	11.9	80	81
9	1599_A	ykoF; YkoF, thiamin-binding protein, ACT-domain family, LIGAND BINDING PROTEIN; HET: MSE; 1.65A {Bacillus subtilis} SCOP	99.73	8.9e-17	117.08	11	85	200
□ 10	1S99_A	ykoF; YkoF, thiamin-binding protein, ACT-domain family, LIGAND BINDING PROTEIN; HET: MSE; 1.65A {Bacillus subtilis} SCOP	99.68	1.1e-15	111.39	10.7	76	200
11	1BXD_A	PROTEIN (OSMOLARITY SENSOR PROTEIN (ENVZ)); HISTIDINE KINASE, OSMOSENSOR, HIS-ASP PHOSPHORELAY SYSTEM, SIGNAL TRANSDUCTI	75.15	42	22.89	8.7	70	161

Template alignment | Template 3D Structure | PDBe

	remplace anginne	inc	icinplace 50	Surac	une in t	JUC .									
10	1S99_A ykoF; Y subtilis} SCOP:	koF d.58	, thiamin-bi 3.48.2	nding	protei	n, ACT-d	lomain family,	LIG	AND BINDING P	ROTEIN; H	ET: MS	E; 1.65/	\ {B	acillus	
	Probability: 99.68	%,	E-value: 1.1	e-15,	Score:	111.39,	Aligned cols: 7	<i>'</i> 6,	Identities: 20%,	Similarity:	0.154,	Templa	te Ne	eff: 8	
	Q ss_pred		Ceeeeee	eccco	cccccc	CCCchHHH	нннннннессо	CeEe	CCCCcEEEeCHHHH	нннннннн	HHHCCE	EEEEE			
	Q Q_5897366_54	1	MIVAFSVA	PSGAS	ASGEAPS	DASVHEA	VAAAVRVVRESGL	PNRT	SSMFTELEGDWDAV	DVVKRATEAV	APYGSR	VSLVL	80	(106)	
	Q Consensus	1	~~~~sl~	P~~~~	~~~~~~		-Iilsgl-	-~~~	T-ieGv-	i	~~~~r	v~~~i	80	(106)	
			+.++ +++	+++ .		++.++	- +++. +++ -	+ ++	++ + +++ ++++	+++++++.+	++.+.	+.+++			
	T Consensus	11	i~a~-sl~	P1~-~		~~~~	-Iilgl-	-~~~	sT-ieGv-	v	~~~g~r	v~~~i	80	(200)	
	T 1599_A	11	AGFRESLY	PMT-L		DFISV	IKSALAATDTSKV	TKT	DHISTVLRGSIDHVI	DAAKAIYLHA	ANSEQH	IVMNG	80	(200)	
	T ss_dssp		EEEEEEE	ECS-1		THHHH	HHHHHHHSCCTTS	SEEE	CSSCEEEEECHHHHH	нннннннн	HTTCSC	EEEEE			
	T ss_pred		EEEEEEE	ECC-C		chHHH	HHHHHHHhhhcCCI	SEEE	ecCeEEEEECHHHHH	нннннннн	HhcCCe	EEEEE			
	Q ss_pred		EEEeCC												
	Q Q_5897366_54	81	KADIRP	86 (106)										
	Q Consensus	81	~i~~~~	86 (106)										
			+++.+.	_	_										
	T Consensus	81	~i~~~~	86 (200)										
	T 1S99_A	81	TFSIGC	86 (200)										
	T ss_dssp		EEEECC	-	149-149-14 1										
	T ss pred		EEECCC												

YkoF has two of these thiamine-binding ACT domains; London_47 has good, full-length matches to both

Regions aligning with London gp47

1	1LXJ_A	HYPOTHETICAL 11.5KDA PROTEIN IN HTB2-NTH2 INTERGENIC REGION; Hypothetical protein, HTB2- NTH2 intergenic region, Structur	99.92	1.4e-23	138.29	14.1	98	104
2	1YQH_B	IG hypothetical 16092; Bacillus cereus, structural genomics, PSI, Protein Structure Initiative, Midwest Center for Struc	99.92	2.2e-23	138.07	14.4	98	109
3	1LXN_D	HYPOTHETICAL PROTEIN MTH1187; HYPOTHETICAL STRUCTURE, STRUCTURAL GENOMICS, PSI, Protein Structure Initiative, Northeast	99.91	6.7e-23	133.11	13.5	96	99
4	2EPI_A	UPF0045 protein MJ1052; NPPSFA, National Project on Protein Structural and Functional Analyses, RIKEN Structural Genomic	99.89	1e-21	128.08	13	93	100
5	2IBO_C	Hypothetical protein SP2199; alpha-beta protein, Structural Genomics, PSI-2, Protein Structure Initiative, Northeast Str	99.89	1.7e-21	128.43	14	95	104
6	PF01910.20	; Thiamine_BP ; Thiamine- binding protein	99.89	1.4e-21	125.81	12.6	91	92
7	1VK8_A	hypothetical protein TM0486; PROTEIN WITH POSSIBLE ROLE IN CELL WALL BIOGENESIS, STRUCTURAL GENOMICS, JOINT CENTER FOR S	99.87	1.2e-20	125.19	12.7	89	106
8	PF07615.14	; Ykof ; YKOF-related Family	99.83	3.4e-19	112.29	11.9	80	81
9	1S99_A	ykoF; YkoF, thiamin-binding protein, ACT-domain family, LIGAND BINDING PROTEIN; HET: MSE; 1.65A {Bacillus subtilis} SCOP	99.73	8.9e-17	117.08	11	85	200
10	1S99_A	ykoF; YkoF, thiamin-binding	99.68	1.1e-15	111.39	10.7	76	200
		LIGAND BINDING PROTEIN; HET: MSE; 1.65A {Bacillus subtilis} SCOP						

Template alignment | Template 3D Structure | PDBe 1VK8_A hypothetical protein TM0486; PROTEIN WITH POSSIBLE ROLE IN CELL WALL BIOGENESIS, STRUCTURAL 7. GENOMICS, JOINT CENTER FOR STRUCTURAL GENOMICS, JCSG; HET: UNL, MSE; 1.8A {Thermotoga maritima} SCOP: d.58.48.1 Probability: 99.87%, E-value: 1.2e-20, Score: 125.19, Aligned cols: 89, Identities: 25%, Similarity: 0.366, Template Neff: 7.8 Q ss pred Q Q 5897366 54 1 MIVAFSVAPSGASASGEAPSDAS HEAVAAAVRV RESGLPNRTSSMFTELEGDWDAVMDVVKRATEAVAPYG-SRVSLV 79 (106) Q Consensus 79 (106) 1 ~~~ ~sal~ ieG-~sl .++.++|+.+++. |+++||+|+++||+|+ +++|+|+++ +.+.+.| .|+.++ 16 T Consensus ~~a~~sl~Pl ~~ i ~~ ~~ql~ieG~~d~v 86 (106) T 1VK8 A 16 86 (106) VTVSIKV PAVED -GRIHEVIDRAIEKISSWGMKYEVGPSNTTVEGEFEEIMDRVKEL-ARYLEQFAKRFVLQ T ss_dssp EEEEEEESSCG-T ss_pred Q ss_pred ЕЕЕесссссссннннннн (See next slide for identification of Q Q_5897366_54 80 LKADIRPGYSGELEGKVERL 99 (106) Q Consensus 80 i-i----kv--v 99 (106) thiamine binding residues) ++++.+. |+ +++++|++++ 105 (106) T Consensus 87 i~i~~~~d~-~s~~~kv~~~ T 1VK8 A 87 105 (106) LDIDYKAGG-ITIEEKVSKY T ss dssp EEEEETTC-CCHHHHHGGG T ss pred EEEEecCCC-CCHHHHHhhc

London_47 has most but not all of the residues identified as important for thiamine binding

HHPred alignment

Template alignment | Template 3D Structure | PDBe

1599_A ykoF; YkoF, thiamin-binding protein, ACT-domain family, LIGAND BINDING PROTEIN; HET: MSE; 1.65A {Bacillus subtilis} SCOP: d.58.48.2

Probability: 99.68%, E-value: 1.1e-15, Score: 111.39, Aligned cols: 76, Identities: 20%, Similarity: 0.154, Template Neff: 8

Q ss_pred		Севевевесссссссссссссссьнининининининссссевесссссвевеснинининининининининининининининининини	
Q Q_5897366_54	1	MIVA SVAPSGASASGEAPSDASVEEAVAAAVRV RESGLPNRTSSMFTELEGDWDAVMDVVKRATEAVAPYGSRVSLVL 80 (1	.06)
Q Consensus	1	+s1-P	.06)
		+.++ ++++++++++++++++++++++++++++++++	
T Consensus	11	i~a- <mark>-sl</mark> ~Pl~v~-v~v~g-rv~i~-l~gl~sT-ieGv~-v~v~vg-rv~i 80 (2	(00
T 1S99_A	11	AGFRISLYPMT-DDFISVIKSALAATDTSKVWTKTDHISTVLRGSIDHVFDAAKAIYLHAANSEQHIVMNG 80 (2	:00)
T ss_dssp		EEEEEEEECS-TTHHHHHHHHHHHSCCTTSEEEECSSCEEEEECHHHHHHHHHH	
T ss_pred		EEEEEEEECC-CchhhhhhhhhhhhhcCCEEEEecCeEEEECHhhhhhhhhhhhhhhhhcCCeEEEE	

Alignment with N-terminal domain

It may be missing some of the residues important for dimer formation (labeled with + in Fig. 6)

https://www.sciencedirect.com/science/article/abs/pii/S0022283604010174?via%3Dihub

Figure 6.

Sequence alignment of the three YkoF proteins from bacterial species. Residues in the hydrophobic core are labeled with an asterisk, those involved in dimer formation are labeled with crosses and the residues important for thiamin recognition are indicated by green boxes.

(https://www.sciencedirect.com/science/article/pii/S0022283610004936?via%3Dihub

Fig. 1. Crystal structure of TM0486. (a) Stereo ribbon diagram of one TM0486 protomer colorcoded from the N-terminus (blue) to the C-terminus (red). Helices H1–H3 and β -strands β 1– β 4 are indicated. The location of the unknown ligand (UNL) is indicated with red spheres. (b) A diagram showing the secondary-structure elements of TM0486 superimposed on its primary sequence. The labelling of secondary-structure elements is based on PDBsum (http://www.ebi.ac.uk/pdbsum). For TM0486, the α -helices H1–H3, the β -strands in β -sheet A, the β -turns (β), the γ -turns (γ) and the β -hairpins are indicated. Residues interacting with the bound unknown ligand are shown with red dots, green triangles indicate residues interacting with the UNL in the same protomer and the blue triangle indicates the residue interacting with the UNL in the adjacent protomer. (c) A ribbon representation of the TM0486 tetramer showing 222 symmetry. Protomers A, B, C and D are depicted in green, cyan, magenta and yellow, respectively and the unknown ligands are shown as red spheres. The β -sheets from protomers A/B and C/D form a continuous anti-parallel β -sheet with strand order β 1, β 2, β 3, β 4, β 4', β 3', β 2', β 1'.

Protein ID: Elezi gp47

** Same secondary structure predictions...

PF01910: Thiamine BP - Thiamine-binding protein

(a)

AlphaFold predicts very similar structure for Elezi47 compared to a thiamine binding protein

Elezi_gp47 AlphaFold2 prediction

TM0486_1vk8 (TBP)