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Abstract

Actinobacteriophages are viruses that infect bacterial hosts in the phylum
Actinobacteria. More than 17,000 actinobacteriophages have been described
and over 3,000 complete genome sequences reported, resulting from large-
scale, high-impact, integrated research-education initiatives such as the
Science Education Alliance Phage Hunters Advancing Genomics and Evo-
lutionary Sciences (SEA-PHAGES) program. Their genomic diversity
is enormous; actinobacteriophages comprise many architecturally mosaic
genomes with distinct DNA sequences. Their genome diversity is driven
by the highly dynamic interactions between phages and their hosts, and
prophages can confer a variety of systems that defend against attack by genet-
ically distinct phages; phages can neutralize these defense systems by coding
for counter-defense proteins. These phages not only provide insights into
diverse and dynamic phage populations but also have provided numerous
tools for mycobacterial genetics. A case study using a three-phage cocktail
to treat a patient with a drug-resistant Mycobacterium abscessus suggests that
phages may have considerable potential for the therapeutic treatment of my-
cobacterial infections.
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Actinobacteriophage:
bacteriophage that
infects bacterial hosts
in the phylum
Actinobacteria

Phage(s): the plural
“phages” refers to
more than one type of
phage; the plural
“phage” refers to many
phage of the same type

INTRODUCTION

Actinobacteriophages are viruses that infect bacteria in the phylum Actinobacteria. The Actinobac-
teria encompass a large group of gram-positive bacteria found both terrestrially and aquatically
and are prominent components of soil microbiomes (1). Many species are pathogens of humans
or animals, although the Actinobacteria are especially rich in bacteria that produce commer-
cially useful antibiotics (2). The Actinobacteria span six major classes, of which the class Acti-
nobacteria is perhaps the largest and the most important, including the pathogenic Mycobacteria
and the antibiotic-producing Streptomyces. Most (but not all) have characteristically high G+C%
genomes. The bacteriophages of these fascinating and important bacteria can reveal key insights
into viral diversity and evolution while also providing tools for genetic analysis and clinical utility
(3).

The phages of the mycobacteria have been the primary focus among the actinobacteriophages,
which were first characterized in the 1950s (4). A key motivation for their characterization was
their potential utility for typing Mycobacterium tuberculosis, although the relatively fast-growing
nonpathogenicM. smegmatiswas often used as a surrogate for phage isolation and characterization
(5, 6). This strategy has well stood the test of time. Of the 10,000 individual phages isolated using
M. smegmatis strain mc2155, over 1,800 have been sequenced and annotated; this remains the
best-characterized collection of phages on any single bacterial host strain (7).New types of phages
infectingM. smegmatis continue to be discovered, but finding new genomes and genes is much less
common than it was even a few years ago. As interest has turned to phages of other actinobacterial
hosts, it is becoming clear that the diversity of phages of many other actinobacteria is at least as
great as that of the mycobacteriophages.Moreover, the comparative genomics of phages of closely
related bacteria provides new insights into pathways of their evolution.

Several reviews on mycobacteriophages have described different aspects of their genomics and
utilities in the past few years (8–12). The last review on mycobacteriophages published by An-
nual Reviews was 10 years ago (8). At that time, the 70 completely sequenced mycobacteriophage
genomes provided marvelous insights into these creatures. With 1,800 sequenced mycobacterio-
phages and 1,200 sequenced phages of other actinobacterial hosts, the landscape of diversity has
changed considerably (7).Moreover, this remarkable collection has provided new insights into the
microbial dynamics that drive the evolution of an enormously diverse viral population and ways
in which they might find therapeutic potential. These newer findings are the focus of this review.

ACTINOBACTERIOPHAGE GENOMICS

Integrated Research-Education Programs for Phage Discovery

The past 10 years have seen a dramatic increase in the number of sequenced actinobacteriophage
genomes (a greater than 40-fold increase), resulting from both enhanced simplicity and reduced
sequencing costs, together with the development of integrated research-education programs (en-
rolling students are sometimes referred to as phage hunters). The first of these was the Phage
Hunters Integrating Research and Education (PHIRE) program starting in 2002, which provided
authentic research experiences to undergraduate and high school students with a local focus in
Pittsburgh, PA (13, 14). In 2008, the Howard Hughes Medical Institute–supported Science Edu-
cation Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES)
program was launched, in which participating institutions offer a phage discovery and genomics
course for early-career undergraduates (15). SEA-PHAGES is an example of an Inclusive Research
Education Community (Figure 1) in which a centralized programmatic infrastructure supports
implementation at each component college and university (16). This enables implementation at
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Figure 1

Organization and structure of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences
(SEA-PHAGES) program. SEA-PHAGES program administrators (yellow box, top) oversee support components critical to program
implementation (green box, upper middle). The typical two-term course structure (pink box, lower middle) includes phage isolation through
comparative genomics; additional characterization includes electron microscopy and PCR/restriction analysis. Sequence and
annotation quality control are shared with SEA-PHAGES faculty teams.

a large scale. At the time of writing (fall 2019), there are 147 participating institutions—ranging
from community colleges to R1 research universities—and over 5,000 enrolled students.

The outcomes of the SEA-PHAGES program are impressive, with clear evidence of enhanced
student persistence in science and strong contributions to bacteriophage discovery and genomics
(16). Students collect environmental samples, extract with a simple buffer, and use either di-
rect plating or enrichment to discover phages that form plaques on a specific bacterial host.
The substantial diversity of the phage population enhances the prospects of students identify-
ing a novel phage (i.e., one that has not been previously described), which they then name and
characterize (16). The phage is purified and amplified, and the virion morphology is determined
by electron microscopy. Phage genomic DNA is extracted, analyzed by restriction and gel elec-
trophoresis, and sequenced. The genome is then analyzed bioinformatically, annotated, compared
to other phage genomes, and submitted to GenBank. Detailed protocols for all steps are available
at https://phagesdb.org and https://seaphages.org. Typically, the program is implemented as a
two-term research laboratory class targeted at first-year undergraduate students (∼4 h/week),with
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microbiology and bioinformatics being the foci of the first and second terms, respectively (16).The
combination of rich scientific discovery and involvement of prospective researchers lacking prior
technical expertise or content knowledge not only makes the overall platform fully inclusive but
also lends it to implementation in many configurations. One such alternative implementation is
the Mycobacteriophages Genetic Course, an intensive 2-week workshop in Durban, South Africa,
from 2008 to 2018.

Bacterial Hosts and Host Ranges

As of November 2019, the total number of isolated actinobacteriophages was 17,323, of which
3,055 are fully sequenced. These bacterial host strains span 14 genera, 70 species, and 110 indi-
vidual strains (Supplemental Table 1). The representation of phages isolated on these various
strains is heterogenous and ranges from ∼1,800 sequenced phages ofM. smegmatis to fewer than
a half dozen for about 50% of the represented species (Supplemental Table 1). However, there
are 50 or more sequenced phages for seven of the genera. In general, there is substantial diver-
sity of the phages for all the bacterial species, with the notable exception of Cutibacterium acnes
(formerly Propionibacterium acnes), for which the phage diversity appears to be quite restricted (17,
18); although few phages of Propionibacterium species such as P. freudenreichii have been described,
these seem to be more varied (19).

The advantage of constraining phage characterization to bacteria within a single phylum is
that it enhances the prospects of learning about their evolutionary pathways. In general, the host
ranges of these phages are narrow and typically do not extend to other host genera—with some
exceptions (20)—and commonly do not extend to other species within a genus (21); phages may
also discriminate between strains within a single species (21, 22). It is thus not surprising that
phages isolated on strains of one actinobacterial genus typically are not related to phages isolated
on other actinobacterial genera, although this is discussed further below.

Actinobacteriophage Virion Morphologies

All of the actinobacteriophages examined to date contain double-stranded DNA (3). Until re-
cently, all were also tailed phages, with examples of siphoviruses, myoviruses, and podoviruses
(23–25) (Figure 2). Curiously, of the more than 1,000 mycobacteriophages that have been ex-
amined by electron microscopy (https://phagesdb.org), all of these are siphoviruses and my-
oviruses; no podoviruses have been identified (3). Moreover, the mycobacteriophage myoviruses
are confined to a single genomic group (Cluster C). The reason for the lack of mycobacterio-
phage podoviruses is unclear but likely reflects a physical constraint imposed by the complex cell
wall that includes a mycobacterial outer membrane composed of mycolic acids (26). Podoviruses
have been described for other Actinobacteria such as Arthrobacter (24), so it is unlikely that their
absence frommycobacteriophages reflects a lack of evolutionary opportunity (Figure 2). The vast
majority of the actinobacteriophages have isometric heads—with diameters ranging from 40 nm
to 80 nm—although some have prolate heads, with length:width ratios ranging from 2.5:1 to 4:1
(27). Prolate-headed phages have been described for Mycobacterium, Microbacterium, and Gordo-
nia hosts and may reflect evolutionary opportunities to expand capsid volume and thus genome
length, facilitating acquisition of additional genomic segments (Figure 2).

Recently, nontailed phages have been described for both Rhodococcus opacus (phage Toil) and
Streptomyces scabiei (phages Forthebois and Wheeheim), which have lipid-containing virions and
are members of the Tectiviridae (28, 29) (Figure 2). Although these are not closely related to each
other or to Tectiviridae of Escherichia coli (e.g., phage PRD1) or Bacillus thuringiensis (e.g., phage
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Cluster: group of
bacteriophages related
to each other and
sharing at least 35% of
genes with at least one
other cluster member

Subcluster: subset of
phages more closely
related to each other
than to other cluster
members

Singleton: phage with
no other close relatives

a   Monty b   Jordan c   MooMoo

e   Wheeheim

d   Jasmine

100 nm 100 nm 100 nm

100 nm

100 nm

Figure 2

Actinobacteriophage virion morphologies. Electron microscope images are shown for phages (a) Monty,
(b) Jordan, (c) MooMoo, (d) Jasmine, and (e) Wheeheim. Monty and MooMoo are examples of siphoviral
morphotypes with long flexible tails, but MooMoo has a prolate (elongated) head, whereas Monty has an
isometric head. Jordan, Jasmine, and Wheeheim are exmplaes of myoviral, podoviral, and tectiviral
morphotypes.

Bam35), all of these share common features in addition to their capsid compositions. They have
similar genome sizes (14–18 kbp), all have terminal proteins covalently attached to their genomes,
and all have short (24–110 bp) inverted terminal repeats.

Groupings into Clusters, Subclusters, and Singletons

Bacteriophage genomes are characteristically architecturally mosaic with the mosaic units often
being single genes (23, 30, 31). Consequently, genomic comparisons identify numerous exam-
ples of gene homologs (often sharing relatively low amino acid sequence identities) in otherwise
unrelated genomes and flanked by unrelated sequences (3). It has been proposed that this arises
predominantly through nonsequence-directed illegitimate recombination events and selection for
function, rather than sequence-directed events (30, 31); transposition and site-specific recombi-
nation processes likely contribute to this mosaicism (9). Homologous recombination (between
common sequences) plays a large role in reassembling gene combinations but does not directly
create new gene boundaries. Not surprisingly, genomic mosaicism substantially confounds phage
taxonomy, creating fuzzy divisions between different groups of phages, and it is likely that there
is an underlying continuum of diversity, albeit with unequal sampling and unequal representa-
tion (23). Thus, although it has proven useful to place actinobacteriophages into groups, they are
groupings of convenience more than a reflection of inviolable biological divisions (23, 25).

The sequencing of the first few mycobacteriophage genomes revealed that they often share
little or no nucleotide sequence similarity and thus could be readily placed into distinct clusters
(i.e., Clusters A, B, C, etc.) (30, 32–34). Some of these clusters have distinct subgroups (e.g., dif-
fering in Average Nucleotide Identity values) and can be divided into subclusters; phages with
no close relatives are referred to as singletons (33, 34). Initially, phages were placed in the same
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Phamily: group of
mycobacteriophage
genes related to each
other, according to
amino acid sequence
relatedness

Table 1 Actinobacteriophage cluster allocations and designations

Host genus
Cluster allocation

(number)a Current designationsb,c Number of phagesd

Mycobacterium A–Z, AA–AJ (36) A–Z, AA–AC (29); 10 singletons 1,795
Arthrobacter AK–AZ, FA–FZ (42) AK–AZ, FA–FG (23); 7 singletons 270
Streptomyces BA–BT (20) BA–BO (15); 12 singletons 217
Propionibacterium BU–BZ (6) BU–BX (4) 55
Rhodococcus CA-CC, CE–CP (15) CA–CC (3); 13 singletons 55
Gordonia CD, CQ–DZ (36)e CD f, CQ–DW (32); 9 singletons 382
Microbacterium EA–EM, GA-GM (26) EA–EM, GA-GC (16); 7 singletons 229
Corynebacterium EN–EZ (13) EN–EP (3); 2 singletons 21

aBlocks of letters are allocated to phages isolated on a particular host genus.
bCurrent cluster designations assigned are shown, with the number of singletons.
cDesignations and assignments as of September 2019.
dNumbers of sequenced phages isolated on that host genus.
eThere is not a strict segregation of phages into new clusters based on isolation host; e.g., some phages isolated on Gordonia group in Cluster A, which is
predominantly populated by mycobacteriophages.
fThe first phage isolated in Cluster CD was originally described as a Rhodococcus phage, but it and all other Cluster CD phages have been confirmed as
Gordonia phages.

cluster if their genomes shared nucleotide similarity spanning greater than 50% of their genome
lengths, a convenient threshold value that was rarely encountered (33, 34).With greatly increased
numbers of sequenced actinobacteriophage genomes, this threshold has presented challenges and
has been revised such that cluster membership requires an average of 35% shared genes (25).
This can be readily determined by sorting actinobacteriophage predicted gene products into
groups of related sequences (phamilies or phams) that are displayed using the program Pham-
erator (https://phamerator.org) (35). A tool is available at http://phagesdb.org to calculate the
proportion of pairwise shared phams and to determine predicted cluster designations for newly
identified phages (7).

A common nomenclature has been deployed for cluster designation of all of the actinobacte-
riophages regardless of their host. The total number of mycobacteriophage clusters is currently
29, and they are labeled Clusters A–Z and AA–AC (together with 10 singletons). Phages of other
hosts are designated with two-letter blocks that can be increased as needed. Further expansion of
host and phage discovery will likely require three-letter blocks, and so on.Table 1 shows a list of
current cluster assignments according to host.

Actinobacteriophage Lifestyles

The actinobacteriophages can be generally grouped into those that are obligatorily lytic and those
that are temperate, the latter defined as those forming visible plaques on a bacterial lawn but that
also form stable lysogens.The former often are referred to simply as lytic phages and produce char-
acteristically clear plaques on a bacterial lawn. The temperate phages form visibly turbid plaques
reflecting the two outcomes of infection: lytic growth for phage replication and lysis, and forma-
tion of stable lysogens that are immune to superinfection [as described for the lambda prototype
(36)]. Lytic and temperate phages can often be distinguished bioinformatically, with temperate
phages commonly coding for repressor and integrase genes. Phage lifestyles correlate closely with
cluster designation, and phages within a cluster have similar properties (7). Nonetheless, within
clusters of temperate phages, it is not uncommon for some naturally occurring isolates to be lytic,
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having lost the ability to establish lysogeny (37); whether these clear plaque variants were present
in the initial environmental sample or were selected during isolation is unresolved.

Of the current 125 actinobacteriophage clusters, 51 (40%) are temperate and 74 (60%) are
lytic (7). However, this distribution varies considerably depending on the host. ForMycobacterium
and Gordonia phages, 50% of clusters are temperate, whereas 40% and 30% of the Streptomyces
and Arthrobacter clusters, respectively, are temperate. However, among theMicrobacterium phages,
only a lone singleton is temperate (https://phagesdb.org); the other 16 clusters and 6 singletons
are all lytic.The reason for the dearth ofMicrobacterium temperate phages is unclear, but it appears
to be a genus-specific rather than a species-specific phenomenon, as the phages were isolated on
ten different strains corresponding to nine different species ofMicrobacterium (7) (Supplemental
Table 1).

The designation of phage lifestyle is sometimes ambiguous. Plaque morphology alone can be
misleading, as some temperate phages form lysogens at relatively low frequencies [for Cluster G
phages it is typically <5% (38)], and the plaques are not evidently turbid unless incubated for
extended periods of time. However, lysogeny can be readily observed by survival of 1–5% of cells
following infection, whereas for a lytic phage, the survivors are typically phage-resistant mutants
arising at frequencies of <10−6. Bioinformatically, repressors cannot always be readily predicted,
although a divergently transcribed pair of small genes with DNA binding motifs (equivalent to
cI and cro in lambda) is remarkably common. Integrase genes can be easily identified—and many
tyrosine-integrase and serine-integrase members are present—although some temperate phages
encode a partitioning system for extrachromosomal maintenance rather than an integrase (39)
(Figure 3).

Curiously, no lytically replicating phages of the gut actinobacteria Bifidobacteria have been de-
scribed.However, genome comparisons have identified several different prophages, some of which
are mitomycin C inducible (40). These prophages—integrated in the host dnaJ2 gene—undergo
excision, replication, and viral assembly following induction and presumably are fully competent to
replicate lytically, although permissive hosts have yet to be identified. Interestingly, several of the
phages have a putative phase variation shufflon system that generates variations in a tail-associated
receptor binding protein (40).

Overall Genomic Diversity

The genomic diversity of the actinobacteriophages is substantial. It is notable that there are only
two known instances of phages with exactly the same genome sequences being isolated twice—at
different locations and times, ruling out the possibility of cross contamination (although there
are several examples of students working at adjacent benches isolating the same phage!). All the
other phages are different from each other, with differences ranging from a few nucleotide substi-
tutions and insertion/deletion of one or more genes within otherwise near-identical genomes, to
shared segments of very close nucleotide similarities spanning near 50% genome length, to shar-
ing of few if any amino acid sequence motifs. A network phylogeny based on shared gene content
(Figure 4) reflects the overall diversity, with generally long branch lengths between phages of
different clusters, subclusters, and singletons.

There are striking differences in the representations of different cluster members. For example,
of the ∼1,800 sequenced actinobacteriophages, over 600 (35%) are in Cluster A, and the intra-
cluster variation is substantial with 20 different subclusters (7) (Figure 4); six clusters (A, B, C, E,
F, and K)—all mycobacteriophages—have more than 100 individual members (Figure 4). Cluster
A phages are also relatively isolated, sharing few genes with other mycobacteriophages, notwith-
standing one subcluster (A15) that is solely composed of Gordonia phages (Figure 4). In contrast,

www.annualreviews.org • Actinobacteriophages 43

A
nn

u.
 R

ev
. V

ir
ol

. 2
02

0.
7:

37
-6

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Pi

tts
bu

rg
h 

on
 1

2/
16

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://phagesdb.org
https://www.annualreviews.org/doi/suppl/10.1146/annurev-virology-122019-070009


22 23 24 25 26 27 28 29 30 31 32

22 23 24 25 26 27 28 29 30 31

22 23 24 25 26 27 28 29 30 31 32

30

107548 (815) 111716 (169)

10
00

46
 (6

71
)

84
55

 (1
6)

91
56

0 
(8

2)

93
63

4 
(1

8)

11
16

92
 (1

6)

10
93

61
 (3

11
)

95
52

8 
(6

32
)

11
22

85
 (9

0)

91
56

0 
(8

2)

11
17

16
 (1

69
)

93634 (18)

93970 (546)

19
32

8 
(7

1)

11
17

16
 (1

69
)

31

32

33

109120 (365)

34

35

45166 (172)

11
22

85
 (9

0)
11

16
70

 (1
77

)

11
16

96
 (1

19
)

95
52

8 
(6

32
)

19
32

8 
(7

1)

10
93

61
 (3

11
)

11
12

23
 (4

2)

36

37

38

39

40

41

42

43

95079 (735) 112494
(310)

44

45

Minor tail protein

32 34

111751 (166)

111751 (166)

36

46014 (114) 93970 (546)

38

31

107548 (815)

100046 (671)

33 35 37

39

40

41

42

43

44

95079 (735)

112494 (310)

45

107548 (815)

10
00

46
 (6

71
)

32 34

111751 (166)

46014 (114)
38

31 33 35

36

23651 (5)

11
16

92
 (1

6)
11

22
85

 (9
0)

19
32

8 
(7

1)

95
52

8 
(6

32
)

10
93

61
 (3

11
)

37 39

40

41

42

43

44

45

95079 (735)

11
24

94
 (3

10
)

46Lokk (A2)

Tail protein genes

Int-Y

ParA
ParB

ParA
ParB

Pol I

Pol I

Pol I

Xis

BobSwaget (A2)

NothingSpecial (A2)

RepA

Early genes

attP

Figure 3

Temperate phage systems for prophage maintenance. The central parts of three Cluster A2 phage genomes are shown that vary in their
prophage maintenance mechanisms. Rightward- and leftward-transcribed genes are shown as boxes above and below the genome
markers, respectively, with gene numbers shown in the boxes. Numbers above or below the genes indicate their assignment into gene
phamilies, with the numbers of phamily members shown in parentheses. Pairwise nucleotide similarity is indicated as spectrum-colored
shading between genomes, with violet reflecting closest similarity. The ends of the structural gene operons (tail protein genes) and the
early gene operons are indicated. Between these, phage NothingSpecial has an integration cassette including a tyrosine-integrase
(Int-Y) and attP site, whereas phages BobSwaget and Lokk have partitioning cassettes encoding parAB genes. Lokk also codes for a
RepA-like protein for extrachromosomal prophage replication, whereas BobSwaget likely replicates using an alternative mechanism.

there are nine clusters with six or fewer members and ten singletons. This heterogenous repre-
sentation confounds predictions for the total genetic diversity, and ongoing sampling of individual
phages only rarely reveals either new mycobacteriophage singletons or relatives of extant single-
tons.The large portion of isolated but unsequencedmycobacteriophages in the collection has been
explored using a Deconvolution Of Genomes by En Masse Sequencing (DOGEMS) strategy in
which pools of phages are sequenced and deconvoluted by PCR, identifying one new singleton
(Kumao) and several members of poorly represented clusters. This strategy has also been useful
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Arthrobacter
Gordonia
Microbacterium
Mycobacterium
Rhodococcus
Streptomyces
Corynebacterium
Propionibacterium
Other

A

B

F K

0.001

C

E

Figure 4

A network phylogeny of actinobacteriophages. A randomly chosen phage from each subcluster and nonsubclustered cluster together
with the singletons were compared by their gene contents and the relationships displayed using SplitsTree (132). Each phage node is
indicated by a colored circle indicating the genus of the bacterial host used for isolation. Clusters containing 100 or more individual
phages are circled and the cluster indicated.

for sampling all the phages (20–40) isolated by a given class of SEA-PHAGES students, when only
one or two have been fully sequenced.

Gordonia phages represent 41 clusters+singletons from 382 sequenced phages, whereas 1,800
sequenced mycobacteriophages span 39 clusters+singletons (Table 1). Thus, the diversity of
Gordonia phages is at least that of the mycobacteriophages. Also, the Gordonia phage sampling is
somewhat less heterogenous and more even within clusters, with the largest Gordonia cluster hav-
ing only 44 genomes (∼12%). Although there are fewer phages of Arthrobacter, Microbacterium,
and Streptomyces, these all have one cluster (AK, EA, and BD, respectively) that is overrepresented
relative to the others. It is noteworthy that whereas the mycobacteriophages were predominantly
isolated on a single host strain (M. smegmatis mc2155), the Gordonia phages were isolated on 16
strains representing nine different species (7, 25). Likewise, the phages of Arthrobacter,Microbac-
terium, and Streptomyces also were isolated on multiple strains/species (5/4, 10/9, and 31/25, re-
spectively). In general, there is not a close correlation between cluster assignment and the host
strain used for isolation (24). The implications of this are substantial, as it suggests that it will
be necessary to characterize much larger numbers of phages on different host species within a
genus to understand diversity. Moreover, the mapping of phages isolated on different hosts to the
same cluster could indicate the relative ease with which host range preferences change during their
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evolution. For example, currently there are fiveGordonia phages grouped in Cluster CW,but these
were isolated onG.malaquae,G. neofelifaecis, andG. rubripertincta, and these phages may be able to
transition between these hosts quite readily. Finally, this also suggests that the spectrum of phages
infecting hosts within the genusMycobacterium is vastly greater than those isolated using the single
strainM. smegmatis mc2155 as a host, and deeper exploration using other mycobacterial strains is
warranted.

Evolutionary Perspectives

What drives the enormous bacteriophage diversity? Genome mosaicism likely arises by either
replication errors or recombination occurring between sequences lacking extended sequence sim-
ilarity (31, 41). Phage-encoded RecET-like systems may mediate these events (41–43) and are
present in genomes in Clusters G, I, N, P, T, DC, DE, DW, EP, AO, AR, AS, BV, BW, CV, CY,
CZ, and DC; these phages represent most of the bacterial hosts, with the notable exception of
Streptomyces. Reassortment of genes can be mediated by RecA-like proteins, and these can also be
phage encoded (30). Many actinobacterial hosts also have nonhomologous end joining (NHEJ)
systems that may facilitate nonsequence-dependent DNA rearrangements, and some phages code
for Ku-like proteins playing roles in NHEJ-mediated recircularization of genome ends following
DNA injection during infection (44). Together, these mechanisms create highly mosaic genomes
in which it is common for boundaries between shared and nonshared nucleotide sequences to co-
incide with gene boundaries (see Figure 3). These likely arise from illegitimate recombination
events coupled with selection for gene function.

The dynamic effects of phage resistance and phage coevolution can drive phage host-range
evolution and thus contribute to the overall diversity (21). Phages migrate across this diverse bac-
terial landscape, pursuing numerous routes across species- and strain-rich environments, sampling
different segments of the larger gene pool. Reconstructing these pathways is currently challenging
because of the dearth of phage genome sequences for the vast majority of bacterial genera, species,
and strains. However, an illuminating example is provided by examination of phage Patience, an
M. smegmatis phage with G+C% content (50.3%) substantially below its host (67%). The Pa-
tience codon usage preferences are widely different from M. smegmatis, making it quite likely
that it recently migrated from moderate G+C% hosts into theMycobacterium neighborhood (45).
Proteomic characterization suggests that highly expressed genes are more rapidly evolving to have
codon usage profiles corresponding to those of the host (45).

Comparison of the rates of gene acquisition/loss and nucleotide divergence suggests that there
are at least two distinct evolutionary modes for bacteriophages (46). The two modes differ in the
rates of horizontal gene exchange relative to nucleotide distance, with a high gene content flux
(HGCF)mode inwhich gene exchange is tenfold greater than in the low gene content flux (LGCF)
mode. Lytic phages predominantly use the LGCFmode, whereas temperate phages distribute be-
tween the HGCF and LGCF modes (46). The basis for the difference between the two modes
is unclear, but it suggests that prophages offer a reservoir of genetic information undergoing fre-
quent exchange. It is noteworthy that phages of different bacterial hosts also vary in their use of
the HGCF and LGCF modes (46). Because both overall diversity and evolutionary modes can
vary substantially, different perspectives on phage evolution can easily arise depending on which
parts of the phage world are examined (23, 47).

Inclusion of a variety of hosts from different bacterial genera facilitates examination of how
phages share genetic information relative to their hosts (Figure 5). In general, pairwise compari-
son of phages shows that phages within a cluster have greater shared gene content andmore similar
nucleotide sequences thanwith other phages (as illustrated forCluster L phages inFigure 5b) (46).

46 Hatfull

A
nn

u.
 R

ev
. V

ir
ol

. 2
02

0.
7:

37
-6

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Pi

tts
bu

rg
h 

on
 1

2/
16

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Nucleotide distance

e

1Number of hosts
Number of clusters 1

1
>1

>1
>1

60

0.0
0.0 0.50.40.1 0.2 0.3

1.0

0.8

0.6

0.4

0.2

40

20

0

Network composition

a

b

c

d

f g

Actinoplanes

Actinoplanes

Tetrasphaera

Microbacterium

Microbacterium

Microbacterium

Clavibacter

Clavibacter

Arthrobacter

Arthrobacter

Arthrobacter

Streptomyces

Streptomyces

Streptomyces

Other

Gordonia

Gordonia

Gordonia

Mycobacterium

Mycobacterium

Mycobacterium

Rhodococcus

Rhodococcus

Rhodococcus

Tsukamurella

Tsukamurella

Brevibacterium

Corynebacterium

Corynebacterium

Propionibacterium

Propionibacterium
Rothia

Ac
tin

op
la
ne
s

M
ic
ro
ba

ct
er
iu
m

Cl
av
ib
ac
te
r

St
re
pt
om

yc
es

G
or
do

ni
a

M
yc
ob

ac
te
riu

m
Rh

od
oc
oc
cu
s

Ts
uk
am

ur
el
la

Br
ev
ib
ac
te
riu

m

Co
ry
ne
ba

ct
er
iu
m

Pr
op

io
ni
ba

ct
er
iu
m

Ro
th
ia

Te
tr
as
ph

ae
ra

0.01

G
en

e 
co

nt
en

t d
is

si
m

ila
ri

ty

N
um

be
r o

f
ne

tw
or

ksN
um

be
r o

f n
et

w
or

ks

8

0

(Caption appears on following page)

www.annualreviews.org • Actinobacteriophages 47

A
nn

u.
 R

ev
. V

ir
ol

. 2
02

0.
7:

37
-6

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
Pi

tts
bu

rg
h 

on
 1

2/
16

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Figure 5 (Figure appears on preceding page)

Heterogeneous genomic diversity of actinobacteriophages. (a) Phylogenetic tree of several actinobacterial host genera.
(b) Representative genomic similarity plot comparing gene content dissimilarity and nucleotide distance (46) between phages in Cluster
L (n = 38) and not in Cluster L (n = 2,384). Each data point represents a pairwise comparison involving a phage within Cluster L and
another phage within (gold) or without (black) Cluster L. (c) Genome networks (n = 87) for all sequenced actinobacteriophages
(n = 2,422). A node represents a phage genome and is colored according to its host genus. Two nodes connected by an edge reflect
phages with an intracluster genomic relationship, having gene content dissimilarity <0.89 and nucleotide distance <0.42 (46). A
network consists of a group of phages that contain at least one edge to another phage in the group and no edges to any phages outside
of the group. (d) Enlarged representative network from panel c containing phages (n = 38) from a single cluster (Cluster L) and a single
host genus (Mycobacterium). (e) Enlarged representative network from panel c containing phages (n = 52) from multiple clusters
(Clusters AM, AU, BI, CC, DJ, and EL and Singleton RosaAsantewaa) and multiple host genera. ( f ) Histogram reflecting phage
diversity based on the composition of the networks in panel c. The number of clusters and host genera represented within each network
were quantified, and the number of networks containing the indicated number of clusters and host genera were reported. For this
analysis, singletons were treated as clusters. (g) Heatmap reflecting phage relationships within networks from panel c by unique host
genera (n = 14).Within each network, host genera pairs connected by an edge were identified. For each possible host genera pair in the
database, the number of networks containing at least one edge connecting the two host genera was quantified and represented by a
color spectrum. Panel a adapted with permission from Reference 24.

Networks can then be constructed with connections between pairs of phages that meet thresh-
old values for both nucleotide distance relationships and shared gene content (Figure 5c). Using
thresholds that approximate previously determined cluster designations, 87 networks are pro-
duced (Figure 5c). (This approach has the advantage of avoiding the binary decisions in cluster
designation, i.e., whether a phage is grouped in a particular cluster or not.) Many of the indi-
vidual networks contain phages of a single cluster and bacterial host (e.g., Cluster L, mycobac-
teria; Figure 5d), whereas others have phages of multiple hosts (Figure 5e). Almost 70% of the
networks consist of a single cluster from a single bacterial host (Figure 5f ), but ∼16% contain
phages of more than one cluster/singleton, and ∼14% have phages both of more than one clus-
ter and from more than one host (Figure 5f ). Although the total number of such networks is
still relatively small, it is clear that phages of phylogenetically closely related hosts (Figure 5a)
are more likely to be in shared networks and are thus sharing their genes at a greater rate than
with phages of more distantly related hosts (Figure 5g). Phage genomes also exchange genes with
their hosts, and it is common to find genes thought of as bacterial in bacteriophage genomes
(30).

Genome Architecture and Gene Expression

Given the genetic diversity, it is not surprising that these phages have a multitude of different
genome organizations. Nonetheless, there are common themes in gene arrangements and ex-
pression profiles. All the phages have virions containing linear genomic DNA, but a variety of
different types of virion DNA termini are observed (3, 7, 48). The two most common are cohesive
ends with short single-stranded extensions—all the actinobacteriophages have 3′ extensions—and
circularly permuted (and presumably terminally redundant) ends reflecting pac-type packaging
systems. However, some have short inverted repeats and covalently linked proteins (e.g., Cluster
BO, FD), and others have long direct repeats (e.g., Cluster BE, BF) that can be up to 11-kbp long.

Phage genes are generally densely packed, with the protein-coding and transfer RNA genes
accounting for greater than 95% of the genome span. As such, the genes are organized into oper-
ons with little or no space between individual open reading frames, and it is common for trans-
lation start and stop codons of adjacent genes to overlap. With the exception of the Myoviridae
(e.g., Clusters AA, AO, AR, C, DO), the virion structural genes are organized into an apparently
single operon of closely linked genes with well-conserved synteny; a noteworthy departure is
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phage Marvin (Cluster S) in which some of the tail genes are displaced into the right part of the
genome (49). All 15 Cluster S phages share this organization, suggesting that this rearrangement
is not a recent event at all. The genomes are oriented for convenience, with the virion structural
genes at the left part of the genome and transcribed rightward (32). Typically, the 15–25-virion
structural genes span 15–25 kbp of the genome; thus, in the smallest genomes (∼15 kbp), there
are few nonstructural genes. In contrast, the larger siphoviral genomes (e.g.,Microbacterium phage
PauloDiaboli, 192 kbp) have a large number of nonstructural genes,most of which are of unknown
function. Indeed, the main difference between small and large genomes of the siphoviruses is the
number of these nonvirion structure and assembly genes (50). Overall, only ∼30% of the phage
genes have assigned functions.

Transcription profiles have been described for several mycobacteriophages during growth and
lysogeny, and common themes emerge (37, 39, 51–55). During lytic growth, there are typically
two temporally separable patterns, designated as early and late, with the early genes expressed in
the first 30 minutes of infection and the late gene expression beginning shortly after and continu-
ing until lysis, typically 2.5–3 hours after infection (Figure 6). RNA sequencing profiles at earlier
times show little evidence of a separable immediate early set of genes, but these could be easily
overlooked, especially if expressed at low levels (Figure 6). It is also noteworthy that at late times
a substantial signal from the early genes remains, either from ongoing expression or stability of
early transcripts. Early genes usually correspond to nonvirion structure and assembly genes (lo-
cated in the rightmost parts of the genomes), and the virion structural genes are expressed late
(Figure 6).

The late genes are highly expressed, and the transcripts are among the most abundant in the
cell (Figure 6). Late gene transcription initiates upstream of the structural genes in Cluster A
phages (Figure 6) but can also start at the right end of the genome and proceed through cos
(52) in the circularized genome. For some phages (e.g., Cluster G), additional promoters may be
located within the body of the late operon (56). In Cluster A phages, there is a highly abundant
transcript at the extreme right end of the genome (37, 51) within a region lacking protein-coding
genes; although several small RNAs have been described (37), their roles are uncertain (Figure 6).
There are likely other small noncoding RNAs expressed in the actinobacteriophages that warrant
further examination.

Lysogenic gene expression patterns show that several phage genes may be expressed in addi-
tion to the repressor. Usually these are located near the center of the genome (i.e., close to an
attachment junction of the prophage). Some of these have been shown to be involved in viral de-
fense and are described in more detail below. For Cluster A and Cluster G phages the operator
sites used to repress lytic gene expression have been identified and overlap early lytic promoters
(38, 56). These have characteristics of sigA-like promoters with canonical −10 and −35 sequences
(38, 57, 58). Unfortunately, little is known about initiation of late gene expression or its regulation
in any of the actinobacteriophages. Late transcription does not start at sigA-like promoters and is
likely dependent on transcriptional activators expressed in early lytic growth. Characterizing late
expression is of interest given their high levels of transcriptional activity.

The Cluster A phages have unusual regulatory systems with multiple (25–35) asymmetric 13–
14-bp repressor-binding sites located throughout the genomes in small intergenic spaces and in
one orientation relative to the direction of transcription (27, 59, 60). These are referred to as stop-
erators because repressor binding leads to interruption of transcription (59). Immune specificity is
conferred by repressor binding preferences for the operator and stoperator sites, and evolution of
immunity involves multiple and complex selection factors (55). The immunity system is not con-
strained to mycobacteriophages but is also found in some phages ofGordonia (25) and Streptomyces
(61).
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Figure 7

Phage-host dynamics. A lysogenic cell is depicted carrying a prophage integrated into the bacterial
chromosome (not to scale). The prophage genome is derived from Phage-A and encodes a repressor protein
(cI) that shuts down lytic genes of both the integrated prophage and superinfecting Phage-A particles. Some
prophages may express membrane proteins that prevent superinfection by the same phage (Phage-A) or
closely related phages. The bacterial chromosome may express a variety of systems to defend against viral
attack (blue arrows), including restriction, various abortive infection systems (abi), CRISPR-Cas, and
toxin-antitoxin (TA) systems. Prophages can express analogous systems (red arrows) that defend against
infection by heterotypic (i.e., unrelated) phages, such as Phage-B.

PHAGE-HOST DYNAMICS

Host-Mediated Actinobacteriophage Defense Mechanisms

Most mycobacterial strains do not have CRISPR-Cas systems includingM. smegmatis andM. ab-
scessus.M. tuberculosis does have a CRISPR-like array, although its functionality is unclear (62) and
there has yet to be a report of a sequence match between a CRISPR spacer and a phage proto-
spacer (Figure 7). It is plausible that there is a reservoir ofM. tuberculosis-specific phages yet to be
described, assuming theCRISPR system is still functional.Clearly theM. tuberculosisCRISPR-Cas
systemwas active at some point, and spacer sequence variation has been used extensively for spolig-
otyping strains (63). Restriction-modification (R-M) systems have been described for Mycobac-
terium (64–68),Microbacterium (69, 70), and Arthrobacter (71–75) strains and for many Streptomyces
strains (e.g., 76, 77). It is likely there are many R-M systems yet to be discovered, playing impor-
tant roles in viral defense. It is notable that there are substantial deviations in genome composition
including tetranucleotide usage that likely reflect phage responses to host R-M systems (78).

Many phage defense abortive infection systems have been described (79, 80), and bioinformatic
analyses have predicted many new viral defense systems in bacteria (81–83). Toxin-antitoxin (TA)
systems are also involved in phage defense, including both Type II and Type III systems (84, 85)
(Figure 7). Experimental evidence for the involvement of TA systems for phage defense in the
actinobacteria is sparse, but it is noteworthy that M. tuberculosis contains a vast number of TA
systems (>80), many of which are likely active (86). These TA pairs could have been selected for
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in an M. tuberculosis environmental recent ancestor—defending against phage attack—similar to
the CRISPR-Cas systems.

Prophage-Mediated Viral Defense

Interestingly, temperate phages are themselves rich reservoirs of viral defense systems (Figure 7).
This should not be unexpected, as temperate phages are abundant in the environment and
prophages can be acquired at relatively high frequencies, presenting gifts of protection against at-
tack from other viruses (53, 87). The prophage-encoded defense genes are expressed lysogenically
and are typically located near the repressor and integrase genes at the center of the viral genome
(53). These are often hypervariable parts of the genome, reflecting exchange of these segments
among phages. Unlike repressor-mediated superinfection immunity, which is homotypic and pre-
vents reinfection by the same or very closely related phages, these defense systems are typically
heterotypic and defend against unrelated phages (53, 88, 89) (Figure 7). Furthermore, they some-
times act with remarkable specificity, defending against only a single known phage (53, 88); in
general this specificity appears much tighter than for the host-encoded resistance mechanisms
(81). The mechanisms and bases for the targeting specificity are largely unknown, although char-
acterization of defense escape mutants reveals genes required for targeting (88, 89). The genes
are typically dispensable for lytic growth, reflecting defense mechanisms acting through abortive
infection rather than direct inhibition of phage growth per se (53, 88, 89). Defense systems have
been described in mycobacterial Cluster N and I phages and Gordonia Cluster CV phages (53, 88,
89) but are likely present in many of the temperate phages. It is noteworthy that defense genes can
be discovered by their lysogenic expression, but identifying the targeted phages requires a very
large collection of phages known to infect the same host strain.

Phages compete with other phages not only through lysogeny but also by exclusion in lytic
growth. Lytically growing phages can exclude other phages from superinfection by a variety of
small membrane-localized proteins (90) or by inhibition of host-encoded functions required for
infection. In one example, the Cluster F phage Fruitloop gp52 protein is expressed in early lytic
growth and binds to and inactivates the host DivIVA (Wag31) protein, excluding infection by the
Cluster B phage Rosebush, which requires DivIVA for efficient infection (91); it is remarkably
specific, and most other Cluster B phages are not excluded. Fruitloop 52 is not required for lytic
growth and has no other known function. It is plausible that many of the small genes replete
throughout phages genomes play similar roles.

Phage-Encoded Counter-Defense Systems

Phages can avoid or escape defense mechanisms either by mutationally changing their host pref-
erences to infect a different bacterium or by acquiring counter-defense systems. Antirestriction
and anti-CRISPR phage genes have been described for Proteobacteria phages (92–94), and it
is likely that there are counter-defense systems for other host-encoded defenses. Additionally,
counter-defense mechanisms can facilitate escape from prophage-mediated systems. In one in-
triguing example, phage Tweety is targeted by the prophage-mediated defenses of phages Phrann
andMichelleMyBell (53), and Tweety escape mutants can be readily isolated.Themutations are in
gene 54, and Tweety gp54 has an unusual organization with 40–48 tetrapeptide repeats flanked by
unique N- and C-terminal regions (53, 95). The escape mutants alter the repeat number and often
the sequence of the repeat units (53), and different mutants tune gp54 for specificity against either
the Phrann or MichelleMyBell systems. Tweety 54 is not required for defense targeting and has
no other known function other than to neutralize the prophage-mediated defense systems (53).
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Protection fromhost defenses that target the phage genome directly can be countered by chem-
ical modification of the phage DNA, and many types have been described (96, 97). Some of the
actinobacteriophages that contain modified DNA bases can display resistance to restriction in
vitro. A well-characterized example is the presence of 7-deazaguanine modifications in several
Cluster B phages (98).

TOOLS AND APPLICATIONS FOR ACTINOBACTERIOPHAGES

Genetic Tools

Mycobacteriophages have contributed many tools used widely in mycobacterial genetics (9, 99).
Notable among these are the integration-proficient vectors that use phage integration systems to
insert plasmids into the host chromosome (38, 50, 95, 100–102). These have the advantages of
integrating at a specific chromosome location, efficient transformation, and the ability to form
stable single-copy recombinants. They are ideal for complementation studies and have been de-
veloped to use multiple different attB loci (9).Mycobacteriophage-derived recombination systems
have been exploited to develop recombineering systems for constructing mutants and recombi-
nants of M. smegmatis and M. tuberculosis (42, 43, 103), and they have been adapted for efficient
manipulation of the phage genomes themselves (104–106). Phage repressors have been adapted
as selectable markers for use in antibiotic-resistant strains (107, 108), phage expression systems
have been characterized (58), and phage partitioning systems have been described that promote
plasmid stability (39). There are numerous other potential genetic tools awaiting development.

Exploitation of mycobacteriophages as vectors to efficiently deliver DNA to host cells has
been advanced through the construction of shuttle phasmids that grow as plasmids in E. coli and as
phages in mycobacteria (109, 110). These have been used to deliver transposons (111) and allelic
exchange substrates (112) to a variety of mycobacterial species, as well as reporter genes such as
luciferase and gfp (113, 114).

Clinical Tools

Several diagnostic tools using mycobacteriophages have been described including the FastPlaque
assay (115, 116) that takes advantage ofM. tuberculosis replication of phage D29 and recombinant
phages that deliver luciferase or fluorescent reporter genes (113, 117).Reporter phages have shown
considerable potential for drug susceptibility testing ofM. tuberculosis in clinical specimens (118–
121) but have yet to be widely implemented. Rapid diagnosis ofM. tuberculosis drug susceptibility
profiles remains a clinically important issue, and reporter phages continue to show considerable
promise (119, 122).

The idea of using phages therapeutically to control mycobacterial infections has been widely
contemplated, especially in response to the emergence of multiple drug resistance in tuberculosis
(10, 123) (see sidebar titled Phage Therapy: Fact or Fiction?). On the one hand, phages have been
described that efficiently kill lab strains of M. tuberculosis, but on the other hand, there are key
questions about access to the bacteria given their intracellular nature and presence in granulomas
(124). In the first therapeutic effort to date, a three-phage cocktail was used to treat a 15-year-old
patient with cystic fibrosis, a bilateral lung transplant, and a disseminated and highly drug-resistant
M. abscessus infection (22). The patient showed substantial improvement after intravenous and
topical phage administration, progressing from palliative care to a normal routine. Although this
is just a single case study, the possibility of using phages more broadly is worth further consid-
eration. The success of this case required identification of specific phages effective in infecting
and killing the specific clinical isolate of M. abscessus (22). Few phages among those isolated on
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BRED: Bacteriophage
Recombineering on
Electroporated DNA

PHAGE THERAPY: FACT OR FICTION?

The idea of using bacteriophages therapeutically was clearly in French-Canadian Felix d’Herelle’s mind shortly
after discovering them a hundred years ago. Without knowing truly what a bacteriophage was, d’Herelle figured
that something capable of killing bacteria in the lab might also do so in a patient, and he tested the idea in 1919.
This caught the attention of the American writer Sinclair Lewis, who published the classic novel Arrowsmith in
1925. Martin Arrowsmith, an aspiring young doctor, uses phages to try to control an outbreak of bubonic plaque
on a fictional Caribbean island. Arrowsmith was awarded the Pulitzer Prize in 1926, but Lewis refused it. However,
in 1930 he accepted the Nobel Prize in Literature, the only Nobel Award associated with phage therapy!

These early themes reflect the challenges and opportunities for phage therapy today. In d’Herrelle’s first
patients, the phages were effectively matched to the infectious strain in the lab, personalizing the therapy, similar
to two recent successful applications (22, 126).Martin Arrowsmith, however, was conflicted on mass administration
of phages to control plague, in the absence of a more thorough understanding of the phages, a challenge that we
have yet to live up to.

M. smegmatis met this requirement, and Bacteriophage Recombineering of Electroporated DNA
(BRED)-engineering and host-range evolution were required to assemble a three-phage cocktail
(22, 125). There is substantial variation in phage susceptibility amongM. abscessus clinical isolates,
and similar case studies will also require personalization of the phages (22, 126). Nonetheless, ad-
vances in understanding phage host range determinants and in genome engineering and synthetic
biology could facilitate a broad-based approach for controlling mycobacterial infections.

Interestingly, clinical isolates ofM. tuberculosis are genomically more homogenous than other
mycobacteria, and a simple phage cocktail may be effective against a wide spectrum of strains.
Early animal model studies suggest that phages might be useful against M. tuberculosis infections
(127–129), but clinical interventions in humans have yet to be reported. An alternative applica-
tion is the prophylactic administration of phages to interfere with tuberculosis transmission, and
recent studies in mice suggest this may be effective (130). Aerosol administration for pulmonary
infections may be attractive, and delivery systems have been compared and evaluated (131).

SUMMARY AND FUTURE PROSPECTS

Over the past 10 years we have seen substantial advances in our understanding of actinobacterio-
phage diversity, glimpses into the complexities of the dynamic interactions between phages and
their hosts, and the first attempt at therapeutic use. A fuller comprehension of genomic diversity
will require both a deeper study of phages using current bacterial hosts and substantial expan-
sion to include many more hosts in the actinobacterial phylum. Fortunately, the development of
integrated research-educational communities provides a means by which this could be achiev-
able (16). A major challenge remains in determining the functions of the ∼200,000 actinobac-
teriophage genes of unknown function. A substantial portion are likely involved in determining
phage-host dynamics; conferring prophage-mediated viral defenses; exclusion during lytic growth;
or counter-defenses to neutralize restriction, CRISPR-Cas, and other resistance mechanisms (53,
91). The specificity within these dynamic interactions complicates disentangling these activities,
and large collections of characterized phages provide enormously powerful tools for doing so. Fi-
nally, although the first successful application of mycobacteriophages to control a drug-resistant
M. abscessus infection had a positive outcome, the potential for clinical application awaits critical
evaluation (22).
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SUMMARY POINTS

1. Actinobacteriophages encompass enormous genetic diversity.

2. Integrated research-education programs such as the Science Education Alliance Phage
Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program are
powerful models for advancing both student engagement and scientific discovery.

3. There are multiple modes of bacteriophage evolution involving varying degrees of hor-
izontal genetic exchange.

4. Over 70% of actinobacteriophage genes are of unknown function.

5. Phages compete with other phages through both exclusion mechanisms in lytic growth
and prophage-mediated viral defense in lysogeny.

6. Actinobacteriophages are a rich source of genes for tool development to advance genetics
of mycobacteria and other actinobacteria.

7. Bacteriophage Recombineering of Electroporated DNA (BRED) engineering is an ef-
fective tool for constructing recombinant phages.

8. A case study suggests there may be potential for therapeutic use of phages to treat my-
cobacterial infections.

FUTURE ISSUES

1. Our understanding of phage genetic diversity has yet to scratch the surface, and intensive
efforts are required to broadly map viral genomes.

2. Determining the functions of the many hundreds of thousands of phage-encoded genes
is critical but requires new strategies and approaches.

3. Phages play critical roles in microbial dynamics, but prophage-mediated viral defense
systems, exclusion systems, counter-defense systems, and counter-exclusion mechanisms
are likely highly prevalent in phage genomes but greatly underexplored.

4. The opportunities and challenges in the therapeutic use of phages for mycobacterial
infections warrant active investigation.
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National Institute of Allergy and Infectious Diseases: https://www.niaid.nih.gov/news-events/video-
fighting-infection-phages. Useful video animation of a phage infection

Actinobacteriophage Database: https://phagesdb.org. Resource for phage discovery and genomics in the un-
dergraduate classroom

SEA-PHAGES: https://seaphages.org. Resource for phage discovery and genomics in the undergraduate
classroom

Center for Phage Technology: https://cpt.tamu.edu/courses/. Resource for phage discovery and genomics
in the undergraduate classroom

PATRIC, the Pathosystems Resource Integration Center: https://www.patricbrc.org/. Comprehensive list-
ing of bacteriophages and their genomes

Strathdee S, Patterson T. 2019.The Perfect Predator: A Scientist’s Race to Save Her Husband from a Deadly Super-
bug: A Memoir. New York: Hachette Books

iBiology: https://www.ibiology.org/microbiology/bacteriophages-genes-genomes/. Video introduction
to bacteriophages
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Supplemental Table 1. Actinobacterial hosts and their phages 
Genus Species # strains # phages # seq phages 
Actinoplanes Actinoplanes sp. 1 1 1 
Arthrobacter A. atrocyaneus 1 8 3 
 A. globiformis 1 108 54 
 Arthrobacter sp. 1 596 210 
 A. sulfureus 1 3 3 
Brevibacterium B. fuscum 1 3 1 
 B. iodinum 1 1 1 
Corynebacterium C. flavescens 1 1 1 
 C. glutamicum 2 6 0 
 C. vitaeruminis 1 26 11 
 C. xerosis 1 22 9 
Dietzia D. maris 1 2 0 
Gordonia G. alkanivorans 1 1 1 
 G. lacunae 1 2 0 
 G. malaquae 3 8 7 
 G. neofelifaecis 1 8 3 
 G. rubripertincta 2 85 32 
 Gordonia sp. 1 5 3 
 G. sputi 1 1 1 
 G. terrae 5 1480 333 
 G. westfalica 1 3 2 
Microbacterium M. aerolatum 1 12 3 
 M. foliorum 1 1494 187 
 M. hominis 1 2 0 
 M. liquefaciens 1 2 2 
 M. natoriense 1 1 1 
 M. nematophilum 1 1 1 
 M. paraoxydans 2 169 34 
 M. terrae 1 9 0 
 M. testaceum 1 3 1 
Mycobacterium M. abscessus 2 2 2 
 M. aichiense 1 1 1 
 M. aurum 1 5 0 
 M. avium 7 8 7 
 M. phlei 2 8 8 
 M. smegmatis 1 10525 1777 
 M. tuberculosis 1 1 1 
Propionibacterium P. acnes 6 47 46 
 P. freudenreichii 5 9 9 
Rhodococcus R. equi 6 8 8 
 R. erythropolis 3 112 45 
 R. globerulus 1 2 1 
 R. rhodochrous 1 1 1 
Rothia R. dentocariosa 1 1 1 
Streptomyces S. antibioticus 1 2 0 
 S. aureofaciens 1 1 1 
 S. avermitilis 2 3 3 
 S. azureus 1 7 5 
 S. bicolor 1 1 0 
 S. coelicolor 1 5 5 
 S. flavovirens 1 3 0 
 S. griseofuscus 1 24 12 
 S. griseus 1 290 87 
 S. himastatinicus 1 1 1 
 S. indigocolor 1 3 0 
 S. lividans 1 49 23 
 S. mirabilis 1 33 4 
 S. platensis 1 88 9 
 S. roseosporus 1 1 1 
 S. sanglieri 1 26 3 
 S. scabiei 1 58 14 
 Streptomyces spp. 4 6 4 
 S. toxytricini 1 12 4 
 S. tricolor 1 3 1 
 S. venezuelae 3 44 16 
 S. virginiae 1 1 1 
 S. viridochromogenes 1 18 4 
 S. xanthochromogenes 1 45 19 
Tetrasphaera T. jenkinsii 1 2 1 
Tsukamurella T. paurometabola 2 2 2 
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